Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(4): 1559-1567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37491616

RESUMO

The promotion of early osseointegration is crucial for the success of biomedical titanium implants. Physical and chemical modifications to the material surface can significantly compensate for the lack of biocompatibility and early osseointegration of the implant. In this study, we implanted strontium onto titanium plates and analyzed the effect of strontium-doped materials on angiogenesis and biocompatibility in the human bone structure. Our findings demonstrated that strontium-loaded titanium sheet materials effectively promote human umbilical vein endothelial cell (HUVEC) biocompatibility and vascular differentiation ability, as evidenced by proliferation-apoptosis assays, RT-qPCR for vascular neogenesis markers, ELISA for vascular endothelial growth factor (VEGF) levels, and nitric oxide (NO) analysis. Mechanism studies based on RNAseq and Western blotting analysis revealed that strontium can promote titanium material biocompatibility with HUVEC cells and vascular neovascularization ability by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Meanwhile, blocking the ERK1/2 signaling pathway could reverse the promotional effect of vascular formation. Overall, we have successfully fabricated a multifunctional biocompatible bone implant with better histocompatibility and angiogenesis compared to uncoated implants.


Assuntos
Estrôncio , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Estrôncio/farmacologia , Estrôncio/química , Fator A de Crescimento do Endotélio Vascular , Proteína Quinase 3 Ativada por Mitógeno , Angiogênese , Sistema de Sinalização das MAP Quinases , Propriedades de Superfície
2.
World J Emerg Med ; 13(4): 274-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837558

RESUMO

BACKGROUND: The surgical step-up approach often requires multiple debridements and might not be suitable for infected pancreatic necrosis (IPN) patients with various abscesses or no safe route for percutaneous catheter drainage (PCD). This case-control study aimed to investigate the safety and effectiveness of one-step laparoscopic pancreatic necrosectomy (LPN) in treating IPN. METHODS: This case-control study included IPN patients undergoing one-step LPN or surgical step-up in our center from January 2015 to December 2020. The short-term and long-term complications after surgery, length of hospital stay, and postoperative ICU stays in both groups were analyzed. Univariate and multivariate logistic regression analyses were performed to explore the risk factors of major complications or death. RESULTS: A total of 53 IPN patients underwent one-step LPN and 37 IPN patients underwent surgical step-up approach in this study. There was no significant difference in the incidence of death, major complications, new-onset diabetes, or new-onset pancreatic exocrine insufficiency between the two groups. However, the length of hospital stay in the one-step LPN group was significantly shorter than that in the surgical step-up group. Univariate regression analysis showed that the surgical approach (one-step/step-up) was not the risk factor for major complications or death. Multivariate logistic regression analysis indicated that computed tomography (CT) severity index, American Society of Anesthesiologists (ASA) class IV, and white blood cell (WBC) were the significant risk factors for major complications or death. CONCLUSION: One-step LPN is as safe and effective as the surgical step-up approach for treating IPN patients, and reduces total hospital stay.

4.
Theranostics ; 9(18): 5298-5314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410216

RESUMO

Rationale: Hypoxia has been proved to contribute to aggressive phenotype of cancers, while functional and regulatory mechanism of long noncoding RNA (lncRNA) in the contribution of hypoxia on pancreatic cancer (PC) tumorigenesis is incompletely understood. The aim of this study was to uncover the regulatory and functional roles for hypoxia-induced lncRNA-MTA2TR (MTA2 transcriptional regulator RNA, AF083120.1) in the regulation of PC tumorigenesis. Methods: A lncRNA microarray confirmed MTA2TR expression in tissues of PC patients. The effects of MTA2TR on proliferation and metastasis of PC cells and xenograft models were determined, and the key mechanisms by which MTA2TR promotes PC were further dissected. Furthermore, the expression and regulation of MTA2TR under hypoxic conditions in PC cells were assessed. We also assessed the correlation between MTA2TR expression and PC patient clinical outcomes. Results: We found that metastasis associated protein 2 (MTA2) transcriptional regulator lncRNA (MTA2TR) was overexpressed in PC patient tissues relative to paired noncancerous tissues. Furthermore, we found that depletion of MTA2TR significantly inhibited PC cell proliferation and invasion both in vitro and in vivo. We further demonstrated that MTA2TR transcriptionally upregulates MTA2 expression by recruiting activating transcription factor 3 (ATF3) to the promoter area of MTA2. Consequentially, MTA2 can stabilize the HIF-1α protein via deacetylation, which further activates HIF-1α transcriptional activity. Interestingly, our results revealed that MTA2TR is transcriptionally regulated by HIF-1α under hypoxic conditions. Our clinical samples further indicated that the overexpression of MTA2TR was correlated with MTA2 upregulation, as well as with reduced overall survival (OS) in PC patients. Conclusions: These results suggest that feedback between MTA2TR and HIF-1α may play a key role in regulating PC tumorigenesis, thus potentially highlighting novel avenues PC treatment.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/metabolismo , Acetilação , Fator 3 Ativador da Transcrição/metabolismo , Animais , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas , Estabilidade Proteica , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica
7.
J Pharmacol Sci ; 135(1): 1-7, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28939129

RESUMO

Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway.


Assuntos
Adenocarcinoma/patologia , Alcenos/farmacologia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/tratamento farmacológico , Alcenos/isolamento & purificação , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fitoterapia , Polifenóis/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salvia miltiorrhiza/química , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Thorac Cancer ; 8(5): 461-470, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28660665

RESUMO

BACKGROUND: Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti-invasive activities, but the mechanisms remain largely unclear. METHODS: In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti-metastasis mechanisms of curcumin in human non-small cell lung cancer A549 cell line. RESULTS: Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin-treated and control groups. miR-330-5p exhibited maximum upregulation, while miR-25-5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen-activated protein kinase, transforming growth factor-ß, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let-7a-3p, miR-1262, miR-499a-5p, miR-1276, miR-331-5p, and miR-330-5p were identified as key microRNA regulators in the network. Finally, using miR-330-5p as an example, we confirmed the role of miR-330-5p in mediating the anti-migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity. CONCLUSION: Our findings provide new insights into the anti-metastasis mechanism of curcumin in lung cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Curcumina/farmacologia , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos
9.
PLoS One ; 12(2): e0172470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231299

RESUMO

The present study was aimed to unravel the inhibitory mechanisms of curcumin for lung cancer metastasis via constructing a miRNA-transcription factor (TF)-target gene network. Differentially expressed miRNAs between human high-metastatic non-small cell lung cancer 95D cells treated with and without curcumin were identified using a TaqMan human miRNA array followed by real-time PCR, out of which, the top 6 miRNAs (miR-302b-3p, miR-335-5p, miR-338-3p, miR-34c-5p, miR-29c-3p and miR-34a-35p) with more verified target genes and TFs than other miRNAs as confirmed by a literature review were selected for further analysis. The miRecords database was utilized to predict the target genes of these 6 miRNAs, TFs of which were identified based on the TRANSFAC database. The findings of the above procedure were used to construct a miRNA-TF-target gene network, among which miR-34a-5p, miR-34c-5p and miR-302b-3p seemed to regulate CCND1, WNT1 and MYC to be involved in Wnt signaling pathway through the LEF1 transcription factor. Therefore, we suggest miR-34a-5p/miR-34c-5p/miR-302b-3p -LEF1-CCND1/WNT1/MYC axis may be a crucial mechanism in inhibition of lung cancer metastasis by curcumin.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Curcumina/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Invasividade Neoplásica/prevenção & controle , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia
10.
Mol Ther Oncolytics ; 3: 16018, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525306

RESUMO

The epithelial-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Curcumin has been extensively studied in preclinical models and clinical trials of cancer prevention due to its favorable toxicity profile. However, the possible involvement of curcumin in the EMT and angiogenesis in lung cancer remains unclear. This study found that curcumin inhibited hepatocyte growth factor (HGF)-induced migration and EMT-related morphological changes in A549 and PC-9 cells. Moreover, pretreatment with curcumin blocked HGF-induced c-Met phosphorylation and downstream activation of Akt, mTOR, and S6. These effects mimicked that of c-Met inhibitor SU11274 or PI3 kinase inhibitor LY294002 or mTOR inhibitor rapamycin treatment. c-Met gene overexpression analysis further demonstrated that curcumin suppressed lung cancer cell EMT by inhibiting c-Met/Akt/mTOR signaling pathways. In human umbilical vein endothelial cells (HUVECs), we found that curcumin also significantly inhibited PI3K/Akt/mTOR signaling and induced apoptosis and reduced migration and tube formation of HGF-treated HUVEC. Finally, in the experimental mouse model, we showed that curcumin inhibited HGF-stimulated tumor growth and induced an increase in E-cadherin expression and a decrease in vimentin, CD34, and vascular endothelial growth factor (VEGF) expression. Collectively, these findings indicated that curcumin could inhibit HGF-promoted EMT and angiogenesis by targeting c-Met and blocking PI3K/Akt/mTOR pathways.

11.
Oncotarget ; 7(17): 24510-26, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27014910

RESUMO

MicroRNAs (miRNAs) play a critical role in drug resistance and epithelial-mesenchymal transition (EMT). The aims of this study were to explore the potential role of miR-206 in governing cisplatin resistance and EMT in lung cancer cells. We found that both lung adenocarcinoma A549 cisplatin-resistant cells (A549/DDP) and H1299 cisplatin-resistant cells (H1299/DDP) acquired mesenchymal features and were along with low expression of miR-206 and high migration and invasion abilities. Ectopic expression of miR-206 mimics inhibited cisplatin resistance, reversed the EMT phenotype, decreased the migration and invasion in these DDP-resistant cells. In contrast, miR-206 inhibitors increased cisplatin resistance, EMT, cell migration and invasion in non-DDP-resistant cells. Furthermore, we found that MET is the direct target of miR-206 in lung cancer cells. Knockdown of MET exhibited an EMT and DDP resistant inhibitory effect on DDP-resistant cells. Conversely, overexpression of MET in non-DDP- resistant cells produced a promoting effect on cell EMT and DDP resistance. In lung adenocarcinoma tissues, we demonstrated that low expression of miR-206 were also correlated with increased cisplatin resistance and MET expression. In addition, we revealed that miR-206 overexpression reduced cisplatin resistance and EMT in DDP-resistant cells, partly due to inactivation of MET/PI3K/AKT/mTOR signaling pathway, and subsequent downregulation of MDR1, ZEB1 and Snail expression. Finally, we found that miR-206 could also sensitize A549/DDP cells to cisplatin in mice model. Taken together, our study implied that activation of miR-206 or inactivation of its target gene pathway could serve as a novel approach to reverse cisplatin resistance in lung adenocarcinomas cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 7(14): 18247-61, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26919096

RESUMO

MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression. Moreover, we demonstrate that miR-206 directly targets c-Met and inhibits its downstream PI3k/Akt/mTOR signaling pathway. In contrast, miR-206 inhibitors promote the expression of c-Met and activate the PI3k/Akt/mTOR signaling, and this effect could be attenuated by the PI3K inhibitor. Moreover, c-Met overexpression assay further confirms the significant inhibitory effect of miR-206 on HGF-induced EMT, cell migration and invasion. Notably, we also find that miR-206 effectively inhibits HGF-induced tube formation and migration of human umbilical vein endothelial cells (HUVECs), and the mechanism is also related to inhibition of PI3k/Akt/mTOR signaling. Finally, we reveal the inhibitory effect of miR-206 on EMT and angiogenesis in xenograft tumor mice model. Taken together, miR-206 inhibits HGF-induced EMT and angiogenesis in lung cancer by suppressing c-Met/PI3k/Akt/mTOR signaling. Therefore, miR-206 might be a potential target for the therapeutic strategy against EMT and angiogenesis of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Neovascularização Patológica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica/patologia , Transplante de Neoplasias , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Transplante Heterólogo
13.
Tumour Biol ; 37(1): 521-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26227219

RESUMO

This study aimed to identify carcinogenic potential-related molecular mechanisms in cancer stem cells (CSCs) in lung cancer. CD133(+) and CD133(-) subpopulations were sorted from A549 cells using magnetic-activated cell sorting. The abilities to form sphere and clone, proliferate, migrate, and invade were compared between CD133(+) and CD133(-) cells, as well as drug sensitivity. Thereafter, microRNA (miRNA) profiles were performed to identify differentially expressed miRNAs between CD133(+) and CD133(-) subpopulation. Following, bioinformatic methods were used to predict target genes for differentially expressed miRNAs and perform enrichment analysis. Furthermore, the mammalian target of rapamycin (mTOR) signaling pathways and CSC property-associated signaling pathways were explored and visualized in regulatory network among competitive endogenous RNA (ceRNA), miRNA, and target gene. CD133(+) subpopulation showed greater oncogenic potential than CD133(-) subpopulation. In all, 14 differentially expressed miRNAs were obtained and enriched in 119 pathways, including five upregulated (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, and -4734) and nine downregulated (hsa-miR-1246, -30b-5p, -5096, -6510-5p, has-miR-7110-5p, -7641, -3197, -7108-5p, and -6791-5p). For mTOR signaling pathway, eight differential miRNAs (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, -4734, -1246, -7641, and -3197) and 39 target genes (e.g., AKT1, AKT2, PIK3CB, PIK3CG, PIK3R1, PIK3CA, and PIK3CD) were involved, as well as some ceRNAs. Besides, for CSC property-related signaling pathways, six miRNAs (hsa-miR-1246, -15b-5p, -30b-5p, -3197, -4734, and -7110-5p) were dramatically enriched in Hedgehog, Notch, and Wnt signaling pathways via regulating 108 target genes (e.g., DVL1, DVL3, WNT3A, and WNT5A). The mTOR and CSC property-associated signaling pathways may be important oncogenic molecular mechanisms in CD133(+) A549 cells.


Assuntos
Antígeno AC133/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Células A549 , Antineoplásicos/química , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Separação Celular , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Transdução de Sinais
14.
Mol Biosyst ; 11(8): 2290-302, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075299

RESUMO

MiRNAs associated with the metastasis of lung cancer remain largely unexplored. In this study, gene and miRNA expression profiling were performed to analyze the global expression of mRNAs and miRNAs in human high- and low-metastatic lung cancer cell strains. By developing an integrated bioinformatics analysis, six miRNAs (miR-424-3p, miR-450b-5p, miR-335-5p, miR-34a-5p, miR-302b-3p and miR-206) showed higher target gene degrees in the miRNA-gene network and might be potential metastasis-related miRNAs. Using the qRT-PCR method, the six miRNAs were further confirmed to show a significant expression difference between human lung cancer and normal tissue samples. Since miR-206 showed lower expression both in lung cancer tissues and cell lines, it was used as an example for further functional verification. The wound healing assay and transwell invasion assay showed that miR-206 mimics significantly inhibited the cell migration and invasion of the high-metastatic lung cancer 95D cell strain. One of its predicted targets in our miRNA-gene network, MET, was also obviously decreased at the protein level when miR-206 was overexpressed. Instead, miR-206 inhibitors increased MET protein expression, cell migration and invasion of the low-metastatic lung cancer 95C cell strain. Meanwhile, the luciferase assay showed that MET was a direct target of miR-206. Furthermore, MET gene silence showed a similar anti-migration and anti-invasion effect with miR-206 mimics in 95D cells and could partially attenuate the migration- and invasion-promoting effect of miR-206 inhibitors in 95C cells, suggesting that miR-206 targets MET in lung cancer metastasis. Finally, we also demonstrated that miR-206 can significantly inhibit lung cancer proliferation and metastasis in mouse models. In conclusion, our study provided a miRNA-gene regulatory network in lung cancer metastasis and further demonstrated the roles of miR-206 and MET in this process, which enhances the understanding of the regulatory mechanism in lung cancer metastasis.


Assuntos
Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , MicroRNAs/biossíntese , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas c-met/biossíntese , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Biosyst ; 11(3): 859-68, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25578635

RESUMO

A microarray analysis of differential genes by curcumin treatment was performed and the crucial pathways associated with non-small cell lung cancer (NSCLC) were investigated. Total RNAs from 0, 10 or 20 µM curcumin treated NSCLC 95D cells were used to prepare microarray chips. The differentially expressed genes (DEGs) were identified using the RankProducts package and their function was predicted by DAVID and gene set enrichment analysis. The pathway crosstalk was analyzed by mapping the gene expression profiles into protein-protein interaction databases. Validation of the microarray results was performed by cell viability, cell migration and western blot analyses. A total of 486 (10 µM) and 264 (20 µM) DEGs were screened between the 95D cells in the presence and absence of curcumin. Function enrichment analysis indicated the DEGs were mainly involved in the steroid biosynthetic process and regulation of autophagy. Pathway crosstalk analysis suggested there was a significant interaction between NSCLC and adherens junctions (or Wnt signaling pathways, which are important for cancer cell proliferation and invasion) in both 10 µM and 20 µM curcumin treated 95D cells. Furthermore, early growth response (EGR-1) was demonstrated to regulate the crosstalk between adherens junctions and Wnt signaling pathways, indicating that EGR-1 may also regulate cell proliferation and migration. This hypothesis was validated by in vitro experiments: EGR-1 was decreased after curcumin treatment. Curcumin exhibited a significant anti-proliferation and anti-migration activity in NSCLC 95D cells, possibly by steering the crosstalk between the Wnt signaling pathway and adherens junction via EGR-1.


Assuntos
Junções Aderentes/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Curcumina/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Neoplasias Pulmonares/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética
16.
J Nutr Biochem ; 25(2): 177-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445042

RESUMO

Curcumin, a natural and crystalline compound isolated from the plant Curcuma longa with low toxicity in normal cells, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about antimetastasis effects and mechanism of curcumin in lung cancer. Rac1 is an important small Rho GTPases family protein and has been widely implicated in cytoskeleton rearrangements and cancer cell migration, invasion and metastasis. In this study, we examined the influence of curcumin on in vitro invasiveness of human lung cancer cells and the expressions of Rac1. The results indicate that curcumin at 10 µM slightly reduced the proliferation of 801D lung cancer cells but showed an obvious inhibitory effect on epidermal growth factor or transforming growth factor ß1-induced lung cancer cell migration and invasion. Meanwhile, we demonstrated that the suppression of invasiveness correlated with inhibition of Rac1/PAK1 signaling pathways and matrix metalloproteinase (MMP) 2 and 9 protein expression by combining curcumin treatment with the methods of Rac1 gene silence and overexpression in lung cancer cells. Laser confocal microscope also showed that Rac1-regulated actin cytoskeleton rearrangement may be involved in anti-invasion effect of curcumin on lung cancer cell. At last, through xenograft experiments, we confirmed the connection between Rac1 and the growth and metastasis inhibitory effect of curcumin in vivo. In summary, these data demonstrated that low-toxic levels of curcumin could efficiently inhibit migration and invasion of lung cancer cells through inhibition of Rac1/PAK1 signaling pathway and MMP-2 and MMP-9 expression, which provided a novel insight into the molecular mechanism of curcumin against lung cancer.


Assuntos
Movimento Celular , Curcumina/farmacologia , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Quinases Ativadas por p21/metabolismo
17.
Mol Biosyst ; 9(12): 3080-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077187

RESUMO

Metastasis is a common feature of lung cancer, involving relationships between genes, proteins and miRNAs. However, lack of early detection and limited options for targeted therapies are weaknesses that cantribute to the dismal statistics observed in lung cancer metastasis. In this paper, gene expression profiling analysis for genes differentially expressed between high- (95D) and low-metastatic lung cancer cell lines (95C) was performed using gene annotation, pathway analysis, literature mining, and the integrated regulatory network as well as motif analysis of miRNA-DEG and TF-DEG. In addition, the expression of EGR-1 (early growth reponse-1) in surgically resected lung squamous carcinomas, adenocarcinomas and normal lung tissue was detected by immunohistochemistry to reveal the relationships between EGR-1 and lung cancer metastasis. A total of 570 different expressed genes (DEGs) were screened, the vast majority of up-regulated DEGs were connected to cell adhesion and focal adhesion. EGR-1 was observed in the center node of the regulatory network, which seems to play a role in the process of cancer metastasis, and further immunohistochemistry detection confirmed this reasoning. Besides EGR-1, several significant module-related DEGs were enriched in the pathway within cancer and focal adhesion according to KEGG pathway enrichment analysis of network modules. The construction of an integrated regulatory network and the functional prediction of EGR-1 provided us with the cytological basis of lung cancer metastasis research and an understanding of the mechanism of metastasis in lung cancer. EGR-1 should be considered as a potential target gene in therapeutic agent for lung cancer metastasis.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Tumores de Células Gigantes/genética , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Transdução de Sinais
18.
Asian Pac J Cancer Prev ; 14(2): 639-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23621211

RESUMO

AIM: Connexin 43 (Cx43) and E-cadherin are important biomarkers related with cancer. Their expression at protein and mRNA levels was here investigated in 50 primary lung carcinoma tissues and 20 samples of adjacent normal tissue of Chinese patients with non-small cell lung cancer (NSCLC). METHODS: Protein and mRNA expression were evaluated by ABC immunohistochemistry and RT-PCR. RESULTS: (1) The positive expression rates of Cx43 and E-cadherin protein were higher in the adjacent normal tissues than those in the primary lung carcinoma tissues; (2) the positive expression rates of Cx43 and E-cadherin protein decreased with NSCLC progression; (3) the expression of E-cadherin protein was not related with the pathological type of NSCLC; and (4) the relative quantity of the Cx43 or E-cadherin mRNA expression was correlated with the the histological type, clinical stage, cancer cell differentiation and the lymph node metastasis. CONCLUSION: The data suggested that the Cx43 and E-cadherin are reduced with NSCLC progression, and might be important biomarkers for judging the metastasis and prognosis.


Assuntos
Caderinas/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Conexina 43/biossíntese , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Caderinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , China , Conexina 43/genética , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese
19.
Mol Cell Biochem ; 377(1-2): 207-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435957

RESUMO

Ezrin, primarily acts as a linker between the plasma membrane and the cytoskeleton, is involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion, motility, and modulation of signaling pathways. Although ezrin is now recognized as a key component in tumor metastasis, its roles and the underlying mechanisms remain unclear. In the present study, we chose highly metastatic human lung carcinoma 95D cells, which highly express the ezrin proteins, as a model to examine the functional roles of ezrin in tumor suppression. An ezrin-silenced 95D cell line was established using lentivirus-mediated short hairpin RNA method. CCK-8 assay and soft agar assay analysis showed that downregulation of ezrin significantly suppressed the tumorigenicity and proliferation of 95D cells in vitro. cell migration and invasion studies showed that ezrin-specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. In parallel, it also induced rearrangements of the actin cytoskeleton. Flow cytometry assay showed that changes in the ezrin protein level significantly affected the cell cycle distribution and eventual apoptosis. Furthermore, further studies showed that ezrin regulated the expression level of E-cadherin and CD44, which are key molecules involved in cell growth, migration, and invasion. Meanwhile, the suppression of ezrin expression also sensitized cells to antitumor drugs. Altogether, our results demonstrated that ezrin played an important role in the tumorigenicity and metastasis of lung cancer cells, which will benefit the development of therapeutic strategy for lung cancer.


Assuntos
Citoesqueleto de Actina/metabolismo , Antineoplásicos/farmacologia , Movimento Celular , Cisplatino/farmacologia , Proteínas do Citoesqueleto/genética , Antígenos CD , Apoptose , Caderinas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Receptores de Hialuronatos/metabolismo , RNA Interferente Pequeno/genética
20.
Zhonghua Zhong Liu Za Zhi ; 34(6): 436-40, 2012 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-22967445

RESUMO

OBJECTIVE: To explore the expression of ezrin protein in human non-small cell lung cancer (NSCLC) tissues and lung cancer cell lines, and the association between the expression of ezrin protein and the expression of E-cadherin and CD44V6 proteins. METHODS: The expression of ezrin protein and mRNA in lung cancer cell lines was detected by RT-PCR and Western blotting. Ezrin, E-cadherin and CD44V6 were detected by immunohistochemical SP staining in tumor tissues from 150 lung cancer cases and in adjacent normal lung tissues from 30 patients. Furthermore, the expression of ezrin in 30 freshly-taken NSCLC tissues was also detected by Western blot. RESULTS: The expression of ezrin protein and mRNA was up-regulated in highly metastatic human lung cancer. The positive rate of ezrin, E-cadherin and CD44V6 expression in the lung cancer was 61.3%, 54.0% and 58.7%, respectively. The up-regulation of ezrin expression was significantly correlated with lymph node metastasis, but not correlated with age, sex, tumor size, histological type, clinical TNM system and pathological grade. Western blot analysis showed that the level of ezrin in the NSCLC tissues was significantly higher than that in the normal tissues (t = 5.013, P < 0.01). Survival analysis showed that the 5-year survival rate of patients with negative ezrin expression was 29.3%, significantly higher than that of patients with positive ezrin expression (15.2%, χ(2) = 4.128, P = 0.042). Multivariate Cox regression analysis showed that ezrin expression (RR = 3.012, P = 0.047) and lymph node metastasis (RR = 4.827, P = 0.035) were significantly independent prognostic factors for patients with lung cancer. Furthermore, a negative correlation was observed between the expressions of ezrin and E-cadherin in lung cancer, and a positive correlation between the expressions of ezrin and CD44V6 in lung cancer. CONCLUSIONS: Ezrin, E-cadherin and CD44V6 play an important role in the regulation of growth and meastasis of lung cancer. Combined detection of ezrin, E-cadherin and CD44V6 expression is helpful in evaluating the metastasis and prognosis of non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adulto , Idoso , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Metástase Linfática , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Taxa de Sobrevida , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...